Dept. Seminar - Marina Vannucci

Monday, March 27, 2017 -
4:10pm to 5:00pm
Event Type: 

Marina Vannucci
Rice University


Bayesian Variable Selection Methods for Large-scale Genomic and Neuroimaging Data


There is now a huge literature on methods for variable selection that use spike-and-slab priors. Such methods, in particular, have been quite successful for applications in a variety of different fields. 

High-throughput genomics and neuroscience are two of such examples. 

There, novel methodological questions are being generated, requiring the integration of different concepts, methods, tools and data types. 

These have in particular motivated the development of variable selection priors that, for example, go beyond the independence assumptions of a simple Bernoulli prior on the inclusion indicators. 

In this talk I will review various prior constructions that incorporate information about structural dependencies among the variables. I will look at hierarchical models for genomic applications, where specific sequence/structure information are incorporated into the prior probability models. I will also present Bayesian models for neuroimaging data and priors that incorporate information on connectivity among brain regions.

Refreshments at 3:45pm in Snedecor 2101.